Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators
نویسندگان
چکیده
In this paper, an important class of hypermutation operators are discussed and quantitatively compared with respect to their success rate and computational cost. We use a standard Immune Algorithm (IA), based on the clonal selection principle to investigate the searching capability of the designed hypermutation operators. We computed the parameter surface for each variation operator to predict the best parameter setting for each operator and their combination. The experimental investigation in which we use a standard clonal selection algorithm with different hypermutation operators on a complex “toy problem”, the trap functions, and a complex NP-complete problem, the 2D HP model for the protein structure prediction problem, clarifies that only few really different and useful hypermutation operators exist, namely: inversely proportional hypermutation, static hypermutation and hypermacromutation operators. The combination of static and inversely proportional Hypermutation and hypermacromutation showed the best experimental results for the “toy problem” and the NP-complete problem.
منابع مشابه
A Novel Hybrid Clonal Selection Algorithm with Combinatorial Recombination and Modified Hypermutation Operators for Global Optimization
Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, th...
متن کاملBaldwinian learning in clonal selection algorithm for optimization
Artificial immune systems are a kind of new computational intelligence methods which draw inspiration from the human immune system. Most immune system inspired optimization algorithms are based on the applications of clonal selection and hypermutation, and known as clonal selection algorithms. These clonal selection algorithms simulate the immune response process based on principles of Darwinia...
متن کاملFinding the Optimal Path to Restoration Loads of Power Distribution Network by Hybrid GA-BCO Algorithms Under Fault and Fuzzy Objective Functions with Load Variations
In this paper proposes a fuzzy multi-objective hybrid Genetic and Bee colony optimization algorithm(GA-BCO) to find the optimal restoration of loads of power distribution network under fault.Restoration of distribution systems is a complex combinatorial optimization problem that should beefficiently restored in reasonable time. To improve the efficiency of restoration and facilitate theactivity...
متن کاملمسیریابی روبات متحرک با استفاده از روشی جدید مبتنی بر الگوریتم ژنتیک با طول آرایه متغیر
Being one of the major research fields in the robotics discipline, the robot motion planning problem deals with finding an obstacle-free start-to-goal path for a robot navigating among workspace obstacles. Such a problem is also encountered in path planning of intelligent vehicles and Automatic Guided Vehicles (AGVs). Traditional (exact) algorithms have failed to solve the problem effectively...
متن کاملHow to Escape Traps Using Clonal Selection Algorithms
This paper presents an experimental study on clonal selection algorithms (CSAs) to optimize simple and complex trap functions. Several settings of the proposed immune algorithms were tested in order to effectively face such a hard computational problem. The key feature to solve the trap functions, hence escape traps, is the usage of the hypermacromutation operator couple with a traditional pert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004